= CAST(CAST(NEWID() AS BINARY(10))+ CAST(GETDATE() AS BINARY(6)) AS UNIQUEIDENTIFIER)(2)实现COMB数据的C#方式:///<summary>/// 返回 GUID 用于数据库操作,特定的时间代码可以提高检索效率/// </summary>/// <returns>COMB (GUID 与时间混合型) 类型 GUID 数据</returns>public static Guid NewComb() { byte[] guidArray = System.Guid.NewGuid().ToByteArray(); DateTime baseDate = new DateTime(1900,1,1); DateTime now = DateTime.Now; // Get the days and milliseconds which will be used to build the byte string TimeSpan days = new TimeSpan(now.Ticks - baseDate.Ticks); TimeSpan msecs = new TimeSpan(now.Ticks - (new DateTime(now.Year, now.Month, now.Day).Ticks)); // Convert to a byte array // Note that SQL Server is accurate to 1/300th of a millisecond so we divide by 3.333333 byte[] daysArray = BitConverter.GetBytes(days.Days); byte[] msecsArray = BitConverter.GetBytes((long)(msecs.TotalMilliseconds/3.333333)); // Reverse the bytes to match SQL Servers ordering Array.Reverse(daysArray); Array.Reverse(msecsArray); // Copy the bytes into the guid Array.Copy(daysArray, daysArray.Length - 2, guidArray, guidArray.Length - 6, 2); Array.Copy(msecsArray, msecsArray.Length - 4, guidArray, guidArray.Length - 4, 4); return new System.Guid(guidArray); } /// <summary>/// 从 SQL SERVER 返回的 GUID 中生成时间信息/// </summary>/// <param name="guid">包含时间信息的 COMB </param>/// <returns>时间</returns>public static DateTime GetDateFromComb(System.Guid guid) { DateTime baseDate = new DateTime(1900,1,1); byte[] daysArray = new byte[4]; byte[] msecsArray = new byte[4]; byte[] guidArray = guid.ToByteArray(); // Copy the date parts of the guid to the respective byte arrays. Array.Copy(guidArray, guidArray.Length - 6, daysArray, 2, 2); Array.Copy(guidArray, guidArray.Length - 4, msecsArray, 0, 4); // Reverse the arrays to put them into the appropriate order Array.Reverse(daysArray); Array.Reverse(msecsArray); // Convert the bytes to ints int days = BitConverter.ToInt32(daysArray, 0); int msecs = BitConverter.ToInt32(msecsArray, 0); DateTime date = baseDate.AddDays(days); date = date.AddMilliseconds(msecs * 3.333333); return date; }
转自:http://www.cnblogs.com/sydeveloper/archive/2013/04/03/2992881.html
[转] SQL Server 数据库性能优化
标签:数据库操作 表示 范围 sub 分享 ntp tab copy 其他
小编还为您整理了以下内容,可能对您也有帮助:
SQL Server数据库的高性能优化经验总结
喜欢这篇文章的朋友给个赞吧,哈哈,欢迎交流,共同进步。
2015-4-30补充:非常感觉编辑的推荐,同时又对慢查询语句优化了一遍,并附上优化记录,欢迎阅读文章。
我用的数据库是mysql5.6,下面简单的介绍下场景
课程表
10) )数据100条
学生表:
10) )数据70000条
学生成绩表SC
select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )
执行时间:30248.271s
晕,为什么这么慢,先来查看下查询计划:
0 and sc.score = 100 )发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。
先给sc表的c_id和score建个索引
CREATE index sc_score_index on SC(score);再次执行上述查询语句,时间为: 1.054s
快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建
索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。
但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:
查看优化后的sql:
> ( `YSB`.`s`.`s_id` ,< EXISTS > ( SELECT 1 FROM `YSB`.`SC` `sc` WHERE ( (`YSB`.`sc`.`c_id` = 0) AND (`YSB`.`sc`.`score` = 100) AND ( < CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id` ) ) ) )补充:这里有网友问怎么查看优化后的语句
方法如下:
在命令窗口执行
有type=all
按照我之前的想法,该sql的执行的顺序应该是先执行子查询
0 and sc.score = 100耗时:0.001s
得到如下结果:
然后再执行
7,29,5000)耗时:0.001s
这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,
mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*11=770077次。
那么改用连接查询呢?
0 and sc.score=100这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index
执行时间是:0.057s
效率有所提高,看看执行计划:
这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引
CREATE index sc_s_id_index on SC(s_id);
show index from SC
在执行连接查询
时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:
优化后的查询语句为:
100) AND (`YSB`.`sc`.`c_id` = 0) )貌似是先做的连接查询,再进行的where条件过滤
回到前面的执行计划:
这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:
正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where
过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql
0 AND sc.score = 100 ) t INNER JOIN Student s ON t.s_id = s.s_id即先执行sc表的过滤,再进行表连接,执行时间为:0.054s
和之前没有建s_id索引的时间差不多
查看执行计划:
先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引
CREATE index sc_score_index on SC(score);再执行查询:
0 AND sc.score = 100 ) t INNER JOIN Student s ON t.s_id = s.s_id执行时间为:0.001s,这个时间相当靠谱,快了50倍
执行计划:
我们会看到,先提取sc,再连表,都用到了索引。
那么再来执行下sql
0 and sc.score=100执行时间0.001s
执行计划:
这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。
2015-04-30日补充:最近又重新导入一些生产数据,经测试发现,前几天优化完的sql执行效率又变低了
调整内容为SC表的数据增长到300W,学生分数更为离散。
先回顾下:
show index from SC
执行sql
执行时间:0.061s,这个时间稍微慢了点
执行计划:
这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度,
单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425
而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率
将会更高,从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的
增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大,因此根据具体
业务情况建立多列的联合索引是必要的,那么我们来试试吧。
alter table SC drop index sc_c_id_index;alter table SC drop index sc_score_index;create index sc_c_id_score_index on SC(c_id,score);
执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接收的
执行计划:
该语句的优化暂时告一段落
总结:
1.mysql嵌套子查询效率确实比较低
2.可以将其优化成连接查询
3.连接表时,可以先用where条件对表进行过滤,然后做表连接
(虽然mysql会对连表语句做优化)
4.建立合适的索引,必要时建立多列联合索引
5.学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要
上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引
后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。
查询语句如下:
2 and type = 2 and age = 10索引:
CREATE index user_test_index_sex on user_test_copy(sex);CREATE index user_test_index_type on user_test_copy(type);CREATE index user_test_index_age on user_test_copy(age);
分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s
执行计划:
发现type=index_merge
这是mysql对多个单列索引的优化,对结果集采用intersect并集操作
我们可以在这3个列上建立多列索引,将表copy一份以便做测试
create index user_test_index_sex_type_age on user_test(sex,type,age);
查询语句:
2 and type = 2 and age = 10执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多
执行计划:
最左前缀
多列索引还有最左前缀的特性:
执行一下语句:
2 select * from user_test where sex = 2 and type = 2 select * from user_test where sex = 2 and age = 10都会使用到索引,即索引的第一个字段sex要出现在where条件中
就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可
如:
2 and type = 2 and age = 10执行时间:0.003s
要比取所有字段快的多
时间:0.139s
在排序字段上建立索引会提高排序的效率
create index user_name_index on user_test(user_name)
最后附上一些sql调优的总结,以后有时间再深入研究
1. 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等
2. 建立单列索引
3. 根据需要建立多列联合索引
当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低,
那么如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。
4. 根据业务场景建立覆盖索引
只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率
5. 多表连接的字段上需要建立索引
这样可以极大的提高表连接的效率
6. where条件字段上需要建立索引
7. 排序字段上需要建立索引
8. 分组字段上需要建立索引
9. Where条件上不要使用运算函数,以免索引失效
参考文章
http://www.cnblogs.com/linfangshuhellowored/p/4430293.html
慢sql查询
http://tech.meituan.com/mysql-index.html
笛卡尔乘积
http://www.cnblogs.com/Toolo/p/3634563.html
sql优化
http://www.cnblogs.com/mliang/p/3637937.html
http://www.cnblogs.com/xwdreamer/archive/2012/07/19/2599494.html
执行计划参考:
http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765237.html
sql优化经历(转存+记录)
标签:
SQL Server数据库的高性能优化经验总结
喜欢这篇文章的朋友给个赞吧,哈哈,欢迎交流,共同进步。
2015-4-30补充:非常感觉编辑的推荐,同时又对慢查询语句优化了一遍,并附上优化记录,欢迎阅读文章。
我用的数据库是mysql5.6,下面简单的介绍下场景
课程表
10) )数据100条
学生表:
10) )数据70000条
学生成绩表SC
select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )
执行时间:30248.271s
晕,为什么这么慢,先来查看下查询计划:
0 and sc.score = 100 )发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。
先给sc表的c_id和score建个索引
CREATE index sc_score_index on SC(score);再次执行上述查询语句,时间为: 1.054s
快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建
索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。
但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:
查看优化后的sql:
> ( `YSB`.`s`.`s_id` ,< EXISTS > ( SELECT 1 FROM `YSB`.`SC` `sc` WHERE ( (`YSB`.`sc`.`c_id` = 0) AND (`YSB`.`sc`.`score` = 100) AND ( < CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id` ) ) ) )补充:这里有网友问怎么查看优化后的语句
方法如下:
在命令窗口执行
有type=all
按照我之前的想法,该sql的执行的顺序应该是先执行子查询
0 and sc.score = 100耗时:0.001s
得到如下结果:
然后再执行
7,29,5000)耗时:0.001s
这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,
mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*11=770077次。
那么改用连接查询呢?
0 and sc.score=100这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index
执行时间是:0.057s
效率有所提高,看看执行计划:
这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引
CREATE index sc_s_id_index on SC(s_id);
show index from SC
在执行连接查询
时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:
优化后的查询语句为:
100) AND (`YSB`.`sc`.`c_id` = 0) )貌似是先做的连接查询,再进行的where条件过滤
回到前面的执行计划:
这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:
正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where
过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql
0 AND sc.score = 100 ) t INNER JOIN Student s ON t.s_id = s.s_id即先执行sc表的过滤,再进行表连接,执行时间为:0.054s
和之前没有建s_id索引的时间差不多
查看执行计划:
先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引
CREATE index sc_score_index on SC(score);再执行查询:
0 AND sc.score = 100 ) t INNER JOIN Student s ON t.s_id = s.s_id执行时间为:0.001s,这个时间相当靠谱,快了50倍
执行计划:
我们会看到,先提取sc,再连表,都用到了索引。
那么再来执行下sql
0 and sc.score=100执行时间0.001s
执行计划:
这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。
2015-04-30日补充:最近又重新导入一些生产数据,经测试发现,前几天优化完的sql执行效率又变低了
调整内容为SC表的数据增长到300W,学生分数更为离散。
先回顾下:
show index from SC
执行sql
执行时间:0.061s,这个时间稍微慢了点
执行计划:
这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度,
单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425
而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率
将会更高,从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的
增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大,因此根据具体
业务情况建立多列的联合索引是必要的,那么我们来试试吧。
alter table SC drop index sc_c_id_index;alter table SC drop index sc_score_index;create index sc_c_id_score_index on SC(c_id,score);
执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接收的
执行计划:
该语句的优化暂时告一段落
总结:
1.mysql嵌套子查询效率确实比较低
2.可以将其优化成连接查询
3.连接表时,可以先用where条件对表进行过滤,然后做表连接
(虽然mysql会对连表语句做优化)
4.建立合适的索引,必要时建立多列联合索引
5.学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要
上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引
后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。
查询语句如下:
2 and type = 2 and age = 10索引:
CREATE index user_test_index_sex on user_test_copy(sex);CREATE index user_test_index_type on user_test_copy(type);CREATE index user_test_index_age on user_test_copy(age);
分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s
执行计划:
发现type=index_merge
这是mysql对多个单列索引的优化,对结果集采用intersect并集操作
我们可以在这3个列上建立多列索引,将表copy一份以便做测试
create index user_test_index_sex_type_age on user_test(sex,type,age);
查询语句:
2 and type = 2 and age = 10执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多
执行计划:
最左前缀
多列索引还有最左前缀的特性:
执行一下语句:
2 select * from user_test where sex = 2 and type = 2 select * from user_test where sex = 2 and age = 10都会使用到索引,即索引的第一个字段sex要出现在where条件中
就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可
如:
2 and type = 2 and age = 10执行时间:0.003s
要比取所有字段快的多
时间:0.139s
在排序字段上建立索引会提高排序的效率
create index user_name_index on user_test(user_name)
最后附上一些sql调优的总结,以后有时间再深入研究
1. 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等
2. 建立单列索引
3. 根据需要建立多列联合索引
当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低,
那么如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。
4. 根据业务场景建立覆盖索引
只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率
5. 多表连接的字段上需要建立索引
这样可以极大的提高表连接的效率
6. where条件字段上需要建立索引
7. 排序字段上需要建立索引
8. 分组字段上需要建立索引
9. Where条件上不要使用运算函数,以免索引失效
参考文章
http://www.cnblogs.com/linfangshuhellowored/p/4430293.html
慢sql查询
http://tech.meituan.com/mysql-index.html
笛卡尔乘积
http://www.cnblogs.com/Toolo/p/3634563.html
sql优化
http://www.cnblogs.com/mliang/p/3637937.html
http://www.cnblogs.com/xwdreamer/archive/2012/07/19/2599494.html
执行计划参考:
http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765237.html
sql优化经历(转存+记录)
标签:
数据库性能优化指的是什么?
1、数据库优化是一个很广的范围,涉及到的东西比较多,并且每个特定的数据库,其具体的优化过程也是不一样的.因为优化的很大一部分最终都要跟具体的数据库系统细节打交道,在此不可能针对所有的数据库都一一详细阐述,如果那样,恐怕写几本书都写不完.只能针对一些比较通用的,经常用到的的东西进行一个讨论
2、一般情况下,数据库的优化指的就是查询性能的优化(虽然严格上来说不应该是这样的),让数据库对查询的响应尽可能的快.
3、仅对数据库系统本身而言,影响到查询性能的因素从理论上来讲,包括数据库参数设置(其实就是通过参数控制数据库系统的内存,i/o,缓存,备份等一些管理性的东西),索引,分区,sql语句.数据库参数设置本身是一个很复杂的东西,分区则主要是针对大数据量的情况下,它分散了数据文件的分布,减少磁盘竞争,使效率得到提升。