发布网友 发布时间:2022-04-20 04:07
共9个回答
热心网友 时间:2022-07-11 17:12
向量a(x1,y1),向量b(x2,y2)
向量a点乘向量b等于x1x2+y1y2
扩展资料
实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。
当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当 |λ| >1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的 |λ|倍。
实数p和向量a的点乘乘积是一个数。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
热心网友 时间:2022-07-11 18:30
向量相乘可以分内积和外积
内积就是: ab=丨a丨丨b丨cosα (注意:内积没有方向,叫做点乘)
外积就是: a×b=丨a丨丨b丨sinα (注意:外积是有方向的。)
拓展资料:
证明
为了更好地推导,我们需要加入三个轴对齐的单位向量i,j,k。
i,j,k满足以下特点:
i = j x k; j = k x i;k = i x j;
k x j = –i;i x k = –j; j x i = –k;
i x i = j x j = k x k = 0;(0是指0向量)
由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。
这三个向量的特例就是 i = (1,0,0) j = (0,1,0) k = (0,0,1)。
对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:
u = Xu*i + Yu*j + Zu*k;
v = Xv*i + Yv*j + Zv*k;
那么 u x v = (Xu*i + Yu*j + Zu*k) x (Xv*i + Yv*j + Zv*k)
= Xu*Xv*(i x i) + Xu*Yv*(i x j) + Xu*Zv*(i x k) + Yu*Xv*(j x i) + Yu*Yv*(j x j) + Yu*Zv*(j x k) + Zu*Xv*( k x i ) + Zu*Yv*(k x j) + Zu*Zv*(k x k)
由于上面的i,j,k三个向量的特点,所以,最后的结果可以简化为
u x v = (Yu*Zv – Zu*Yv)*i + (Zu*Xv – Xu*Zv)*j + (Xu*Yv – Yu*Xv)*k。
参考资料:向量积-百度百科
热心网友 时间:2022-07-11 20:04
向量相乘用坐标表示的公式是:
已知两个非零向量a,b,作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π,则两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。
若a、b不共线,则
若a、b共线,则 。
扩展资料:
1、向量,在数学中是指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
2、向量代数表示方法:一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如: ,也可以用大写字母AB、CD上加一箭头(→)等表示,如: 。
参考资料:向量_百度百科 向量积_百度百科
热心网友 时间:2022-07-11 21:56
a=(x1,y1),b=(x2,y2)a*b=x1*x2+y1*y2这就是坐标公式哪里不清欢迎追问,满意谢谢采纳!
热心网友 时间:2022-07-12 00:04
向量相乘用坐标表示的公式是什么?向量a(x1,y1),向量b(x2,y2)
向量a点乘向量b等于x1x2+y1y2
扩展资料
实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。
当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当 |λ| >1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的 |λ|倍。
实数p和向量a的点乘乘积是一个数。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
热心网友 时间:2022-07-12 02:28
向量a(x1,y1),向量b(x2,y2)
向量a点乘向量b等于x1x2+y1y2
热心网友 时间:2022-07-12 05:10
鉴于评论区有同学认为这个证明有循环论证之嫌,即先用数量积坐标公式证明余弦定理,又用了余弦定理反过来证明这个公式,这里添加一些步骤来说明这个问题。想看推导坐标公式的同学可以直接跳过这一段看分割线后面的部分。
定义1: 两向量的数量积定义为其中一条向量在另一条向量方向上的正投影的长度与被投影向量的长度之积,若投影出的向量与被投影向量方向一致则此值为正,若相反则此值为负。即:[公式]. 其中, [公式] 代表两向量的夹角。
定理1: 向量数量积的乘法分配律,即 [公式] .
证明:如图,设 [公式]
即证: [公式]
分别过B、C作AD的垂线,垂足分别为E、G. 再过B作CG的垂线,垂足为F .
易知 [公式],
[公式]
又[公式]故 [公式]
即 [公式]
证毕
由定理1容易得到:
[公式]
定理2(余弦定理): 在 [公式] 中,设 [公式] 所对的边长为 [公式] , [公式] 所对的边长为 [公式] , [公式] 所对的边长为 [公式] , 则它们满足如下关系:
[公式]
证明:如图,设 [公式]
则有
[公式]
即 [公式]
剩余两对同理
证毕
由此可见余弦定理可以直接作为向量数量积定义的一个推论而并没有涉及到数量积的坐标公式(就是下面证的这个),因此并不存在循环论证的问题。当然余弦定理不止这一种证法,其他方法有兴趣的话可以自行研究。
热心网友 时间:2022-07-12 08:08
向量相乘的坐标公式:λ(μa)=(λμ)a。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。
热心网友 时间:2022-07-12 11:22
实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。
当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当 |λ| >1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍
当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的 |λ|倍。
实数p和向量a的点乘乘积是一个数。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。