首页 热点资讯 义务教育 高等教育 出国留学 考研考公

如何使用遗传算法或神经网络在MATLAB 中求二元函数最小值

发布网友 发布时间:2022-04-22 11:27

我来回答

3个回答

热心网友 时间:2023-11-03 05:38

% 2008年4月12日修改
%**********************%主函数*****************************************
function main()
global chrom lchrom oldpop newpop varible fitness popsize sumfitness %定义全局变量
global pcross pmutation temp bestfit maxfit gen bestgen length epop efitness val varible2 varible1
global maxgen po pp mp np val1
length=18;
lchrom=30; %染色体长度
popsize=30; %种群大小
pcross=0.6; %交叉概率
pmutation=0.01; %变异概率
maxgen=1000; %最大代数
mp=0.1; %保护概率
%
initpop; % 初始种群
%
for gen=1:maxgen
generation;
end
%
best;
bestfit % 最佳个体适应度值输出
bestgen % 最佳个体所在代数输出
x1= val1(bestgen,1)
x2= val1(bestgen,2)
gen=1:maxgen;
figure
plot(gen,maxfit(1,gen)); % 进化曲线
title('精英保留');
%
%********************** 产生初始种群 ************************************
%
function initpop()
global lchrom oldpop popsize
oldpop=round(rand(popsize,lchrom)); %生成的oldpop为30行12列由0,1构成的矩阵
%其中popsize为种群中个体数目lchrom为染色体编码长度

%
%*************************%产生新一代个体**********************************
%
function generation()
global epop oldpop popsize mp
objfun; %计算适应度值
n=floor(mp*popsize); %需要保留的n个精英个体
for i=1:n
epop(i,:)=oldpop((popsize-n+i),:);
% efitness(1,i)=fitness(1,(popsize-n+i))
end
select; %选择操作
crossover;
mutation;
elite; %精英保留

%
%************************%计算适应度值************************************
%
function objfun()
global lchrom oldpop fitness popsize chrom varible varible1 varible2 length
global maxfit gen epop mp val1
a1=-3; b1=3;
a2=-2;b2=2;
fitness=0;
for i=1:popsize
%前一未知数X1
if length~=0
chrom=oldpop(i,1:length);% before代表节点位置
c=decimal(chrom);
varible1(1,i)=a1+c*(b1-a1)/(2.^length-1); %对应变量值

%后一未知数
chrom=oldpop(i,length+1:lchrom);% before代表节点位置
c=decimal(chrom);
varible2(1,i)=a2+c*(b2-a2)/(2.^(lchrom-length)-1); %对应变量值
else
chrom=oldpop(i,:);
c=decimal(chrom);
varible(1,i)=a1+c*(b1-a1)/(2.^lchrom-1); %对应变量值
end
%两个自变量
fitness(1,i)=4*varible1(1,i)^2-2.1*varible1(1,i)^4+1/3*varible1(1,i)^6+varible1(1,i)*varible2(1,i)-4*varible2(1,i)^2+4*varible2(1,i)^4;
%fitness(1,i) = 21.5+varible1(1,i)*sin(4*pi*varible1(1,i))+varible2(1,i) *sin(20*pi*varible2(1,i));
%一个自变量
%fitness(1,i) = 20*cos(0.25*varible(1,i))-12*sin(0.33*varible(1,i))+40 %个体适应度函数值
end
lsort; % 个体排序
maxfit(1,gen)=max(fitness); %求本代中的最大适应度值maxfit

val1(gen,1)=varible1(1,popsize);
val1(gen,2)=varible2(1,popsize);
%************************二进制转十进制**********************************
%
function c=decimal(chrom)
c=0;
for j=1:size(chrom,2)
c=c+chrom(1,j)*2.^(size(chrom,2)-j);
end
%
%************************* 个体排序 *****************************
% 从小到大顺序排列
%
function lsort()
global popsize fitness oldpop epop efitness mp val varible2 varible1
for i=1:popsize
j=i+1;
while j<=popsize
if fitness(1,i)>fitness(1,j)
tf=fitness(1,i); % 适应度值
tc=oldpop(i,:); % 基因代码
fitness(1,i)=fitness(1,j); % 适应度值互换
oldpop(i,:)=oldpop(j,:); % 基因代码互换
fitness(1,j)=tf;
oldpop(j,:)=tc;
end
j=j+1;
end
val(1,1)=varible1(1,popsize);
val(1,2)=varible2(1,popsize);
end

%*************************转轮法选择操作**********************************
%
function select()
global fitness popsize sumfitness oldpop temp mp np
sumfitness=0; %个体适应度之和
for i=1:popsize % 仅计算(popsize-np-mp)个个体的选择概率
sumfitness=sumfitness+fitness(1,i);
end
%
for i=1:popsize % 仅计算(popsize-np-mp)个个体的选择概率
p(1,i)=fitness(1,i)/sumfitness; % 个体染色体的选择概率
end
%
q=cumsum(p); % 个体染色体的累积概率(内部函数),共(popsize-np-mp)个
%
b=sort(rand(1,popsize)); % 产生(popsize-mp)个随机数,并按升序排列。mp为保护个体数
j=1;
k=1;
while j<=popsize % 从(popsize-mp-np)中选出(popsize-mp)个个体,并放入temp(j,:)中;
if b(1,j)<q(1,k)
temp(j,:)=oldpop(k,:);
j=j+1;
else
k=k+1;
end
end
%
j=popsize+1; % 从统一挪过来的(popsize-np-mp)以后个体——优秀个体中选择
for i=(popsize+1):popsize % 将mp个保留个体放入交配池temp(i,:),以保证群体数popsize
temp(i,:)=oldpop(j,:);
j=j+1;
end
%
%**************************%交叉操作***************************************
%
function crossover()
global temp popsize pcross lchrom mp
n=floor(pcross*popsize); %交叉发生的次数(向下取整)
if rem(n,2)~=0 % 求余
n=n+1; % 保证为偶数个个体,便于交叉操作
end
%
j=1;
m=0;
%
% 对(popsize-mp)个个体将进行随机配对,满足条件者将进行交叉操作(按顺序选择要交叉的对象)
%
for i=1:popsize
p=rand; % 产生随机数
if p<pcross % 满足交叉条件
parent(j,:)=temp(i,:); % 选出1个父本
k(1,j)=i;
j=j+1; % 记录父本个数
m=m+1 ; % 记录杂交次数
if (j==3)&(m<=n) % 满足两个父本(j==3),未超过交叉次数(m<=n)
pos=round(rand*(lchrom-1))+1; % 确定随机位数(四舍五入取整)
for i=1:pos
child1(1,i)=parent(1,i);
child2(1,i)=parent(2,i);
end
for i=(pos+1):lchrom
child1(1,i)=parent(2,i);
child2(1,i)=parent(1,i);
end
i=k(1,1);
j=k(1,2);
temp(i,:)=child1(1,:);
temp(j,:)=child2(1,:);
j=1;
end
end
end
%
%****************************%变异操作*************************************
%
function mutation()
global popsize lchrom pmutation temp newpop oldpop mp
m=lchrom*popsize; % 总的基因数
n=round(pmutation*m); % 变异发生的次数
for i=1:n % 执行变异操作循环
k=round(rand*(m-1))+1; %确定变异位置(四舍五入取整)
j=ceil(k/lchrom); % 确定个体编号(取整)
l=rem(k,lchrom); %确定个体中变位基因的位置(求余)
if l==0
temp(j,lchrom)=~temp(j,lchrom); % 取非操作
else
temp(j,l)=~temp(j,l); % 取非操作
end
end
for i=1:popsize
oldpop(i,:)=temp(i,:); %产生新的个体
end
%
%*********************%精英选择%*******************************************
%
function elite()
global epop oldpop mp popsize
objfun; %计算适应度值
n=floor(mp*popsize); %需要保留的n个精英个体
for i=1:n
oldpop(i,:)=epop(i,:);
% efitness(1,i)=fitness(1,(popsize-n+i))
end;

%
%*********************%最佳个体********************************************
%
function best()
global maxfit bestfit gen maxgen bestgen
bestfit=maxfit(1,1);
gen=2;
while gen<=maxgen
if bestfit<maxfit(1,gen)
bestfit=maxfit(1,gen);
bestgen=gen;
end
gen=gen+1;
end
%**************************************************************************

热心网友 时间:2023-11-03 05:39

hehe,GA可以了!

热心网友 时间:2023-11-03 05:39

留下联系方式哦,我有相关代码。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com