发布网友 发布时间:2022-04-21 08:31
共3个回答
懂视网 时间:2022-04-29 20:27
GitHub地址:https://github.com/alibaba/canal
在介绍Canal内部原理之前,首先来了解一下MySQL Master/Slave同步原理:
Canal工作原理:
简而言之,Canal是通过模拟成为MySQL的slave,监听MySQL的binlog日志来获取数据。当把MySQL的binlog设置为row模式以后,可以获取到执行的每一个Insert/Update/Delete的脚本,以及修改前和修改后的数据,基于这个特性,Canal就能高效的获取到MySQL数据的变更。
Canal架构:
说明:
server代表一个Canal运行实例,对应于一个jvm
instance对应于一个数据队列(1个server对应1..n个instance)
EventParser:数据源接入,模拟slave协议和master进行交互,协议解析
EventSink:Parser和Store连接器,主要进行数据过滤,加工,分发的工作
EventStore:负责存储
MemoryMetaManager:增量订阅和消费信息管理器
Event Parser设计:
整个parser过程大致可分为以下几步:
如果需要同步的master宕机,可以从它的其他slave节点继续同步binlog日志,避免单点故障。
Event Sink设计:
EventSink主要作用如下:
数据过滤:支持通配符的过滤模式,表名,字段内容等
数据路由/分发:解决1:n(1个parser对应多个store的模式)
数据归并:解决n:1(多个parser对应1个store)
数据加工:在进入store之前进行额外的处理,比如join
数据1:n业务
为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在MySQL上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注。
数据n:1业务
同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并。
Event Store设计:
支持多种存储模式,比如Memory内存模式。采用内存环装的设计来保存消息,借鉴了Disruptor的RingBuffer的实现思路。
RingBuffer设计:
定义了3个cursor:
put:Sink模块进行数据存储的最后一次写入位置(同步写入数据的cursor)
get:数据订阅获取的最后一次提取位置(同步获取的数据的cursor)
ack:数据消费成功的最后一次消费位置
借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:
实现说明:
Instance设计:
instance代表了一个实际运行的数据队列,包括了EventPaser、EventSink、EventStore等组件。抽象了CanalInstanceGenerator,主要是考虑配置的管理方式:
manager方式:和你自己的内部web console/manager系统进行对接。(目前主要是公司内部使用)
spring方式:基于spring xml + properties进行定义,构建spring配置。
Server设计:
server代表了一个Canal运行实例,为了方便组件化使用,特意抽象了Embeded(嵌入式)/Netty(网络访问)的两种实现。
增量订阅/消费设计:
具体的协议格式,可参见:CanalProtocol.proto。数据对象格式:EntryProtocol.proto
Entry Header logfileName [binlog文件名] logfileOffset [binlog position] executeTime [binlog里记录变更发生的时间戳] schemaName [数据库实例] tableName [表名] eventType [insert/update/delete类型] entryType [事务头BEGIN/事务尾END/数据ROWDATA] storeValue [byte数据,可展开,对应的类型为RowChange] RowChange isDdl [是否是ddl变更操作,比如create table/drop table] sql [具体的ddl sql] rowDatas [具体insert/update/delete的变更数据,可为多条,1个binlog event事件可对应多条变更,比如批处理] beforeColumns [Column类型的数组] afterColumns [Column类型的数组] Column index [column序号] sqlType [jdbc type] name [column name] isKey [是否为主键] updated [是否发生过变更] isNull [值是否为null] value [具体的内容,注意为文本]
针对上述的补充说明:
1.可以提供数据库变更前和变更后的字段内容,针对binlog中没有的name、isKey等信息进行补全
2.可以提供ddl的变更语句
Canal HA机制:
Canal的HA实现机制是依赖zookeeper实现的,主要分为Canal server和Canal client的HA。
Canal server:为了减少对MySQL dump的请求,不同server上的instance要求同一时间只能有一个处于running状态,其他的处于standby状态。
Canal client:为了保证有序性,一份instance同一时间只能由一个Canal client进行get/ack/rollback操作,否则客户端接收无法保证有序。
Canal Server HA架构图:
大致步骤:
Canal Client的方式和Canal server方式类似,也是利用Zookeeper的抢占EPHEMERAL节点的方式进行控制。
关注微信公众号:大数据学习与分享,获取更对技术干货
监听MySQL的binlog日志工具分析:Canal
标签:数据存储 lin mbed head join padding 数据源 项目 文本
热心网友 时间:2022-04-29 17:35
有两种方法,一种方法使用mysql的check table和repair table 的sql语句,另一种方法是使用MySQL提供的多个myisamchk, isamchk数据检测恢复工具。前者使用起来比较简便。推荐使用。
1. check table 和 repair table
登陆mysql 终端:
mysql -uxxxxx -p dbname
check table tabTest;
如果出现的结果说Status是OK,则不用修复,如果有Error,可以用:
repair table tabTest;
进行修复,修复之后可以在用check table命令来进行检查。在新版本的phpMyAdmin里面也可以使用check/repair的功能。
2. myisamchk, isamchk
其中myisamchk适用于MYISAM类型的数据表,而isamchk适用于ISAM类型的数据表。这两条命令的主要参数相同,一般新的系统都使用MYISAM作为缺省的数据表类型,这里以myisamchk为例子进行说明。当发现某个数据表出现问题时可以使用:
myisamchk tablename.MYI
进行检测,如果需要修复的话,可以使用:
myisamchk -of tablename.MYI
关于myisamchk的详细参数说明,可以参见它的使用帮助。需要注意的时在进行修改时必须确保MySQL服务器没有访问这个数据表,保险的情况下是最好在进行检测时把MySQL服务器Shutdown掉。
另外可以把下面的命令放在你的rc.local里面启动MySQL服务器前:
[ -x /tmp/mysql.sock ] && /pathtochk/myisamchk -of /DATA_DIR/*/*.MYI
其中的/tmp/mysql.sock是MySQL监听的Sock文件位置,对于使用RPM安装的用户应该是/var/lib/mysql/mysql.sock,对于使用源码安装则是/tmp/mysql.sock可以根据自己的实际情况进行变更,而pathtochk则是myisamchk所在的位置,DATA_DIR是你的MySQL数据库存放的位置。
需要注意的时,如果你打算把这条命令放在你的rc.local里面,必须确认在执行这条指令时MySQL服务器必须没有启动!检测修复所有数据库(表)
热心网友 时间:2022-04-29 18:53
当启动Binlog后,事务会产生Binlog Event,这些Event被看做事务数据的一部分。因此要保证事务的Binlog Event和InnoDB引擎中的数据的一致性。所以带Binlog的CrashSafe要求MySQL宕机重启后能够保证:
- 所有已经提交的事务的数据仍然存在。
- 所有没有提交的事务的数据自动回滚。
- 所有已经提交了的事务的Binlog Event也仍然存在。
- 所有没有提交事务没有记录Binlog Event。
这些要求很好理解,如果重启后数据还在,但是Binlog Event没有了,就没办法复制到其他节点上了。如果重启后,数据没了,但是Binlog Event还在,那么不存在的数据就会被复制到其他节点上,从而导致主从的不一致。
为了保证带Binlog的CrashSafe,MySQL内部使用的两阶段提交(Two Phase Commit)。
2 - MySQL的Two Phase Commit(2PC)
在开启Binlog后,MySQL内部会自动将普通事务当做一个XA事务来处理:
- 自动为每个事务分配一个唯一的ID
- COMMIT会被自动的分成Prepare和Commit两个阶段。
- Binlog会被当做事务协调者(Transaction Coordinator),Binlog Event会被当做协调者日志。
想了解2PC,可以参考文档:【https://en.wikipedia.org/wiki/Two-phase_commit_protocol。】
- 分布式事务ID(XID)
使用2PC时,MySQL会自动的为每一个事务分配一个ID,叫XID。XID是唯一的,每个事务的XID都不相同。XID会分别被Binlog和InnoDB记入日志中,供恢复时使用。MySQ内部的XID由三部分组成:
- 前缀部分
前缀部分是字符串"MySQLXid"
- Server ID部分
当前MySQL的server_id
- query_id部分
为了保证XID的的唯一性,数字部分使用了query_id。MySQL内部会自动的为每一个语句分配一个query_id,全局唯一。
参考代码:sql/xa。h的struct xid_t结构。
- 事务的协调者Binlog
Binlog在2PC中充当了事务的协调者(Transaction Coordinator)。由Binlog来通知InnoDB引擎来执行prepare,commit或者rollback的步骤。事务提交的整个过程如下:
1. 协调者准备阶段(Prepare Phase)
告诉引擎做Prepare,InnoDB更改事务状态,并将Redo Log刷入磁盘。
2. 协调者提交阶段(Commit Phase)
2.1 记录协调者日志,即Binlog日志。
2.2 告诉引擎做commit。
注意:记录Binlog是在InnoDB引擎Prepare(即Redo Log写入磁盘)之后,这点至关重要。
在MySQ的代码中将协调者叫做tc_log。在MySQL启动时,tc_log将被初始化为mysql_bin_log对象。参考sql/binlog.cc中的init_server_components():
if (opt_bin_log) tc_log= &mysql_bin_log;
而在事务提交时,会依次执行:
tc_log->prepare();
tc_log->commit();
参考代码:sql/binlog.cc中的ha_commit_trans()。当mysql_bin_log是tc_log时,prepare和commit的代码在sql/binlog.cc中:
MYSQL_BIN_LOG::prepare();
MYSQL_BIN_LOG::commit();
-协调者日志Xid_log_event
作为协调者,Binlog需要将事务的XID记入日志,供恢复时使用。Xid_log_event有以下几个特点:
- 仅记录query_id
因为前缀部分不变,server_id已经记录在Event Header中,Xid_log_event中只记录query_id部分。
- 标志事务的结束
在Binlog中相当于一个事务的COMMIT语句。
一个事务在Binlog中看起来时这样的:
Query_log_event("BEGIN");DML产生的events; Xid_log_event;
- DDL没有BEGIN,也没有Xid_log_event 。
- 仅InnoDB的DML会产生Xid_log_event
因为MyISAM不支持2PC所以不能用Xid_log_event ,但会有COMMIT Event。
Query_log_event("BEGIN");DML产生的events;Query_log_event("COMMIT");
问题:Query_log_event("COMMIT")和Xid_log_event 有不同的影响吗?
- Xid_log_event 中的Xid可以帮助master实现CrashSafe。
- Slave的CrashSafe不依赖Xid_log_event
事务在Slave上重做时,会重新产生XID。所以Slave服务器的CrashSafe并不依赖于Xid_log_event 。Xid_log_event 和Query_log_event("COMMIT"),只是作为事务的结尾,告诉Slave Applier去提交这个事务。因此二者在Slave上的影响是一样的。
3 - 恢复(Recovery)
这个机制是如何保证MySQL的CrashSafe的呢,我们来分析一下。这里我们假设用户设置了以下参数来保证可靠性:
- 恢复前事务的状态
在恢复开始前事务有以下几种状态:
- InnoDB中已经提交
根据前面2PC的过程,可知Binlog中也一定记录了该事务的的Events。所以这种事务是一致的不需要处理。
- InnoDB中是prepared状态,Binlog中有该事务的Events。
需要通知InnoDB提交这些事务。
- InnoDB中是prepared状态,Binlog中没有该事务的Events。
因为Binlog还没记录,需要通知InnoDB回滚这些事务。
- Before InnoDB Prepare
事务可能还没执行完,因此InnoDB中的状态还没有prepare。根据2PC的过程,Binlog中也没有该事务的events。 需要通知InnoDB回滚这些事务。
- 恢复过程
从上面的事务状态可以看出:恢复时事务要提交还是回滚,是由Binlog来决定的。
- 事务的Xid_log_event 存在,就要提交。
- 事务的Xid_log_event 不存在,就要回滚。
恢复的过程非常简单:
- 从Binlog中读出所有的Xid_log_event
- 告诉InnoDB提交这些XID的事务
- InnoDB回滚其它的事务