首页 热点资讯 义务教育 高等教育 出国留学 考研考公

向量乘法原理

发布网友 发布时间:2022-04-25 12:03

我来回答

3个回答

热心网友 时间:2024-04-05 17:22

原理:

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(竖起的大拇指指向是c的方向)

向量积|c|=|a×b|=|a||b|sin<a,b>。即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

几何意义:

叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。

扩展资料

向量的混合积:

设有三个向量:a=(a1、a2、a3), b=(b1、b2、b3),c=(c1、c2、c3),则称(aⅹb)∙c为向量a,b,c的混合积,记作[abc]。根据行列式的运算性质,可得向量的混合积满足轮换性,即(aⅹb)∙c=( bⅹc)∙a =( cⅹa)∙b。

向量混合积的几何应用:

a、b、c共面⇔[abc]=0⇔存在不全零的数λ、μ、γ,使得λa +μb +γc=0。

参考资料来源:百度百科-向量积

热心网友 时间:2024-04-05 17:22

向量乘法分向量积,数量积
1.向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。
运算法则:运用三阶行列式
设a,b,c分别为沿x,y,z轴的单位向量
A=(x1,y1,z1)B=(x2,y2,z2)则A*B=
a b c
x1 y1 z1
x2 y2 z2
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a平行b〈=〉a×b=0
向量的向量积运算律
a×b=-b×a
(λa)×b=λ(a×b)=a×(λb)
a×(b+c)=a×b+a×c.
(a+b)×c=a×c+b×c.
上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。
如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!
注:向量没有除法,“向量AB/向量CD”是没有意义的。
2.数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算律
a·b=b·a(交换律)
(λa)·b=λ(a·b)(关于数乘法的结合律)
(a+b)·c=a·c+b·c(分配律)
向量的数量积的性质
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

热心网友 时间:2024-04-05 17:23

向量乘法包括:向量积,数量积
向量积
也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。
定义:两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。叉积可以被定义为:在这里θ表示和之间的角度(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。而n是一个与和均垂直的单位矢量。
向量由向量空间的方向确定,即按照给定直角坐标系 (i, j, k) 的左右手定则。若 (i, j, k) 满足右手定则,则 (a, b, a × b) 也满足右手定则;或者两者同时满足左手定则。
几何意义:叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积。进一步就是说,三重积可以得到以 a,b,c 为边的平行六面体的体积。
向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,点积.记作a•b,θ是a与b的夹角(0° ≤ θ ≤ 180°),|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
向量的数量积的性质
(1)a·a=∣a|²≥0
(2)a·b=b·a
(3)k(ab)=(ka)b=a(kb)
(4)a·(b+c)=a·b+a·c
(5)a·b=0⇔a⊥b

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com