发布网友
共1个回答
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题
热心网友
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)
“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入三维空间。简易的“莫比乌斯圈”可通过一张长方形纸任何一面反转粘贴。
莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。
这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为
x-y
面,中心为(0,0,0)。参数
u
在
v
从一个边移动到另一边的时候环绕整个带子。
从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在
莫比乌斯带的参数方程
0≤x≤1的时候(x,0)~(1-x,1)决定。
莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。追问貌似没有回答我的问题