发布网友 发布时间:2022-04-24 16:23
共5个回答
热心网友 时间:2022-06-20 09:11
是标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
公式:
1、如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);
2、如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);
3、因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。
扩展资料:
标准差和离散度关系:
标准差是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。
检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。
虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。
如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
一组数据怎样去评价和量化它的离散度,有很多种方法:
极差
最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。
离均差平方和
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。
为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
方差
由于离均差的平方和与样本个数有关,只能反映相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将离均差的平方和求平均值,这就是我们所说的方差成了评价离散度的较好指标。
样本量越大越能反映真实的情况,而算术平均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
标准差意义
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。
在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。
变异系数
标准差能很客观准确的反映一组数据的离散程度,但是对于不同的项目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。
一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一“自然”的测量。
参考资料来源:百度百科--概率
参考资料来源:百度百科--标准差
热心网友 时间:2022-06-20 09:12
是标准差,离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
公式:
1、如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);
2、如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);
3、因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。
总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接*均值。
扩展资料:
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。
由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。
但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。
而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。
参考资料来源:百度百科——标准差
热心网友 时间:2022-06-20 09:12
是标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
公式:
1、如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);
2、如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);
3、因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。
热心网友 时间:2022-06-20 09:13
s就是样本的均方差,书上有公式,你要和整体方差,还有样本的二阶中心距区分开,不然算距估计和一般的估计就会算错了,不满足估计无偏性的要求。。
热心网友 时间:2022-06-20 09:13
是样本标准差
总体标准差是σ