发布网友 发布时间:2022-04-24 07:44
共4个回答
热心网友 时间:2022-06-17 17:48
平均值的标准偏差是指一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差应该是17.078分,B组的标准差应该是2.160分,说明A组学生之间的差距要比B组学生之间的差距大得多。
扩展资料
标准差可以当作不确定性的一种测量:
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为17.08分,B组的标准差约为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
热心网友 时间:2022-06-17 17:49
平均值的标准偏差时相对于单次测量标准偏差而言的,在随机误差正态分布曲线中作为标准来描述其分散程度:
在一定测量条件下(真值未知),对同一被测几何量进行多组测量(每组皆测量N 次),则对应每组N 次测量都有一个算术平均值,各组的算术平均值不相同。不过,它们的分散程度要比单次测量值的分散程度小得多。描述它们的分散程度同样可以用标准偏差作为评定指标。根据误差理论,测量列算术平均值的标准偏差σχ 与测量列单次测量值的标准偏差σ 存在如下关系
σχ=σ /√n
----------------------
单次测量标准偏差:(贝塞尔公式计算)见图片
残余误差νi 即测得值与算术平均值之差
N:测量次数
热心网友 时间:2022-06-17 17:49
平均值的标准偏差。就是在平均制的基础上允许由上下的幅度存在。这个幅度是因为这个产品不同。也是不同的。
热心网友 时间:2022-06-17 17:50
s/n