发布网友 发布时间:2022-04-21 11:37
共2个回答
热心网友 时间:2022-04-18 19:30
PCI,外设组件互连标准(Peripheral Component Interconnect)
一种由英特尔(Intel)公司1991年推出的用于定义局部总线的标准。此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s(33MHz * 32bit/s),基本上满足了当时处理器的发展需要。随着对更高性能的要求,1993年又提出了bit的PCI总线,后来又提出把PCI 总线的频率提升到66MHz。目前广泛采用的是32-bit、33MHz的PCI 总线,bit的PCI插槽更多是应用于服务器产品。从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。管理器提供信号缓冲,能在高时钟频率下保持高性能,适合为显卡,声卡,网卡,MODEM等设备提供连接接口,工作频率为33MHz/66MHz。
PCI总线系统要求有一个PCI控制卡,它必须安装在一个PCI插槽内。这种插槽是目前主板带有最多数量的插槽类型,在当前流行的台式机主板上,ATX结构的主板一般带有5~6个PCI插槽,而小一点的MATX主板也都带有2~3个PCI插槽。根据实现方式不同,PCI控制器可以与CPU一次交换32位或位数据,它允许智能PCI辅助适配器利用一种总线主控技术与CPU并行地执行任务。PCI允许多路复用技术,即允许一个以上的电子信号同时存在于总线之上。
由于PCI 总线只有133MB/s的带宽,对声卡、网卡、视频卡等绝大多数输入/输出设备显得绰绰有余,但对性能日益强大的显卡则无法满足其需求。Intel在 2001年春季的IDF上,正式公布了旨在取代PCI总线的第三代I/O技术,该规范由Intel支持的AWG(Arapahoe Working Group)负责制定。2002年4月17日,AWG正式宣布3GIO1.0规范草稿制定完毕,并移交PCI-SIG(PCI特别兴趣小组,PCI- Special Interest Group)进行审核。开始的时候大家都以为它会被命名为Serial PCI(受到串
行ATA的影响),但最后却被正式命名为PCI Express,Express意思是高速、特别快的意思。
2002年7月23日,PCI-SIG 正式公布了PCI Express 1.0规范,并于2007年初推出2.0规范(Spec 2.0),将传输率由PCI Express 1.1的2.5GB/s提升到5GB/s;目前主流的显卡接口都支持PCI-E 2.0
HT是HyperTransport的简称。HyperTransport本质是一种为主板上的集成电路互连而设计的端到端总线技术,目的是加快芯片间的数据传输速度。HyperTransport技术在AMD平台上使用后,是指AMD CPU到主板芯片之间的连接总线(如果主板芯片组是南北桥架构,则指CPU到北桥),即HT总线。类似于Intel平台中的前端总线(FSB),但 Intel平台目前还没采用
HyperTransport技术从规格上讲已经用HT1.0、HT2.0、HT3.0、HT3.1
HyperTransport技术。
HyperTransport是AMD为K8平台专门设计的高速串行总线。它的发展历史可回溯到1999年,原名为“LDT总线”(Lightning Data Transport,闪电数据传输)。2001年7月,这项技术正式推出,AMD同时将它更名为HyperTransport。随后,Broadcom、 Cisco、Sun、NVIDIA、ALi、ATI、Apple、Transmeta等许多企业均决定采用这项新型总线技术,而AMD也借此组建 HyperTransport开放联盟,从而将HyperTransport推向产业界。
在基础原理上,HyperTransport与目前的PCI Express非常相似,都是采用点对点的单双工传输线路,引入抗干扰能力强的LVDS信号技术,命令信号、地址信号和数据信号共享一个数据路径,支持 DDR双沿触发技术等等,但两者在用途上截然不同—PCI Express作为计算机的系统总线,而HyperTransport则被设计为两枚芯片间的连接,连接对象可以是处理器与处理器、处理器与芯片组、芯片组的南北桥、路由器控制芯片等等,属于计算机系统的内部总线范畴。
第一代HyperTransport的工作频率在200MHz— 800MHz范围,并允许以100MHz为幅度作步进调节。因采用DDR技术,HyperTransport的实际数据激发频率为400MHz— 1.6GHz,最基本的2bit模式可提供100MB/s—400MB/s的传输带宽。不过,HyperTransport可支持2、4、8、16和 32bit等五种通道模式,在400MHz下,双向4bit模式的总线带宽为0.8GB/sec,双向8bit模式的总线带宽为1.6GB /sec;800MHz下,双向8bit模式的总线带宽为3.2GB/sec,双向16bit模式的总线带宽为6.4GB/sec,双向32bit模式的总线带宽为12.8GB/sec,远远高于当时任何一种总线技术。
2004年2月,HyperTransport技术联盟(Hyper Transport Technology Consortium)又正式发布了HyperTransport 2.0规格,由于采用了Dual-data技术,使频率成功提升到了1.0GHz、1.2GHz和1.4GHz,双向16bit模式的总线带宽提升到了 8.0GB/sec、9.6GB/sec和11.2GB/sec。Intel 915G架构前端总线在6.4GB/sec。
目前AMD的S939 Athlon处理器都已经支持1Ghz Hyper-Transport总线,而最新的K8芯片组也对双工16Bit的1GHz Hyper-Transport提供了支持,令处理器与北桥芯片的传输率达到8GB/s
2007年11月19日,AMD正式发布了HyperTransport 3.0 总线规范,提供了1.8GHz、2.0GHz、2.4GHz、2.6GHz几种频率,最高可以支持32通道。32位通道下,单向带宽最高可支持20.8GB/s的传输效率。考虑到其DDR的特性,其总线的传输效率可以达到史无前例的41.6GB/s。
HT 3.0的总线还支持另一项名为“Un-Ganging”的新特性,该技术可允许超传输总线系统在操作过程中对运行模式作动态调整。这项特性可以让那些搭载 SMT同步多线程技术的服务器系统明显受益,包括RX780、RD780以及RD790在内的AMD芯片组全都支持该特性。
超传输技术联盟(HTC)在2008年8月19日发布了新版HyperTransport 3.1规范和HTX3规范,将这种点对点、低延迟总线技术的速度提升到了3.2GHz。
目前HT 3.0的速度最高只有2.6GHz,比如AMD的旗舰四核心处理器Phenom X4 9950 BE就是这一速度。在提速至3.2GHz后,再结合双倍数据率(DDR),HT 3.1可提供最高每位6.4GB/s(3.2GHz X 2 因为DDR以2倍速传输)的数据传输率,32-bit带宽可达51.2GB/s(6.4GB/s X 32bit/8)。
实际上,HT 3.1规范一共定义了三种速度,分别是2.8GHz、3.0GHz和3.2GHz,累计带宽提升23%,同时在核心架构、电源管理与通信协议方面与之前版本保持一致。
这两个都相当于传输接口,超频只和硬件本身工作有关系,和这两个接口是没有关系的。
热心网友 时间:2022-04-18 20:48
从1992年创立规范到如今,PCI总线已成为了计算机的一种标准总线。由PCI总线构成的标准系统结构如图一所示。
PCI总线取代了早先的ISA总线。当然与在PCI总线后面出现专门用于显卡的AGP总线,与现在PCI Express总线,但是PCI能从1992用到现在,说明他有许多优点,比如即插即用(Plug and Play)、中断共享等。在这里我们对PCI总线做一个深入的介绍。
从数据宽度上看,PCI总线有32bit、bit之分;从总线速度上分,有33MHz、66MHz两种。目前流行的是32bit @ 33MHz,而bit系统正在普及中。改良的PCI系统,PCI-X,最高可以达到bit @ 133MHz,这样就可以得到超过1GB/s的数据传输速率。如果没有特殊说明,以下的讨论以32bit @ 33MHz为例。
一、基本概念
不同于ISA总线,PCI总线的地址总线与数据总线是分时复用的。这样做的好处是,一方面可以节省接插件的管脚数,另一方面便于实现突发数据传输。在做数据传输时,由一个PCI设备做发起者(主控,Initiator或Master),而另一个PCI设备做目标(从设备,Target或Slave)。总线上的所有时序的产生与控制,都由Master来发起。PCI总线在同一时刻只能供一对设备完成传输,这就要求有一个仲裁机构(Arbiter),来决定在谁有权力拿到总线的主控权。
32bit PCI系统的管脚按功能来分有以下几类:
系统控制: CLK,PCI时钟,上升沿有效
RST ,Reset信号
传输控制: FRAME#,标志传输开始与结束
IRDY#,Master可以传输数据的标志
DEVSEL#,当Slave发现自己被寻址时置低应答
TRDY#,Slave可以转输数据的标志
STOP#,Slave主动结束传输数据的信号
IDSEL,在即插即用系统启动时用于选中板卡的信号
地址与数据总线: AD[31::0],地址/数据分时复用总线
C/BE#[3::0],命今/字节使能信号
PAR,奇偶校验信号
仲裁号: REQ#,Master用来请求总线使用权的信号
GNT#,Arbiter允许Master得到总线使用权的信号
错误报告: PERR#,数据奇偶校验错
SERR#,系统奇偶校验错
当PCI总线进行操作时,发起者(Master)先置REQ#,当得到仲裁器(Arbiter)的许可时(GNT#),会将FRAME#置低,并在AD总线上放置Slave地址,同时C/BE#放置命令信号,说明接下来的传输类型。所有PCI总线上设备都需对此地址译码,被选中的设备要置DEVSEL#以声明自己被选中。然后当IRDY#与TRDY#都置低时,可以传输数据。当Master数据传输结束前,将FRAME#置高以标明只剩最后一组数据要传输,并在传完数据后放开IRDY#以释放总线控制权。
这里我们可以看出,PCI总线的传输是很高效的,发出一组地址后,理想状态下可以连续发数据,峰值速率为132MB/s。实际上,目前流行的33M@32bit北桥芯片一般可以做到100MB/s的连续传输。
二、即插即用的实现
所谓即插即用,是指当板卡插入系统时,系统会自动对板卡所需资源进行分配,如基地址、中断号等,并自动寻找相应的驱动程序。而不象旧的ISA板卡,需要进行复杂的手动配置。
实际的实现远比说起来要复杂。在PCI板卡中,有一组寄存器,叫"配置空间"(Configuration Space),用来存放基地址与内存地址,以及中断等信息。
以内存地址为例。当上电时,板卡从ROM里读取固定的值放到寄存器中,对应内存的地方放置的是需要分配的内存字节数等信息。操作系统要跟据这个信息分配内存,并在分配成功后把相应的寄存器中填入内存的起始地址。这样就不必手工设置开关来分配内存或基地址了。对于中断的分配也与此类似。
三、中断共享的实现
ISA卡的一个重要局限在于中断是独占的,而我们知道计算机的中断号只有16个,系统又用掉了一些,这样当有多块ISA卡要用中断时就会有问题了。
PCI总线的中断共享由硬件与软件两部分组成。
硬件上,采用电平触发的办法:中断信号在系统一侧用电阻接高,而要产生中断的板卡上利用三极管的集电极将信号拉低。这样不管有几块板产生中断,中断信号都是低;而只有当所有板卡的中断都得到处理后,中断信号才会回复高电平。
软件上,采用中断链的方法:假设系统启动时,发现板卡A用了中断7,就会将中断7对应的内存区指向A卡对应的中断服务程序入口ISR_A;然后系统发现板卡B也用中断7,这时就会将中断7对应的内存区指向ISR_B,同时将ISR_B的结束指向ISR_A。以此类推,就会形成一个中断链。而当有中断发生时,系统跳转到中断7对应的内存,也就是ISR_B。ISR_B就要检查是不是B卡的中断,如果是,要处理,并将板卡上的拉低电路放开;如果不是,则呼叫ISR_A。这样就完成了中断的共享。
在PC(Personal Computer 即个人计算机)的发展中,总线屡屡成为系统性能的瓶颈,这主要是CPU(Central Processor Unit即*处理器 )的更新换代和应用不断扩大所致。总线是微机系统中广泛采用的一种技术。总线是一组信号线,是在多于2个模块(子系统或设备)间相互通讯的通路,也是微处理器与外部硬件接口的核心。自IBM PC问世20余年来,随着微处理器技术的飞速发展,使得PC的应用领域不断扩大,随之相应的总线技术也得到不断创新。由PC/XT到ISA、MCA、EISA、VESA再到PCI、AGP、IEEE1394、USB总线等。究其原因,是因为CPU的处理能力迅速提升,但与其相连的外围设备通道带宽过窄且总落后于CPU的处理能力,这使得人们不得不改造总线,尤其是局部总线。目前,AGP局部总线数据传输率可达528MB/s,PCI-X可达1GB/s,系统总线传输率也由66MB/s到100MB/s甚至更高的133MB/s、150MB/s。总线的这种创新,促进了PC系统性能的日益提高。随着微机系统的发展,有的总线标准仍在发展、完善,与此同时,有某些总线标准会因其技术过时而被淘汰。当然,随着应用技术发展的需要,也会有新的总线技术不断研制出来,同时在竞争的市场中,不同总线还会拥有自己特定的应用领域。目前除了大家熟悉、较为流行的PCI、AGP、IEEE1394、USB等总线外,又出现了EV6总线、PCI-X局部总线、NGIO总线等,它们的出现,从某种程度上代表了未来总线技术的发展趋势。20年来,CPU已经迅速发展到6-7代,相应的总线技术创新也已经达到了10余次之多。如果从这个角度来预测一下,在21世纪初期,CPU主频有加快发展的趋势,加上内存存取时间的不断缩短,PC系统总线势必面临提高数据传输率的创新:
1、ISA总线
ISA(Instry Standard Architecture即工业标准结构总线)是美国IBM公司为286计算机制定的工业标准总线。该总线的总线宽度是16位,总线频率为8MHz。
2、EISA总线
EISA(Extended Instry Standard Architecture即扩展工业标准结构总线)是为32位*处理器(386、486、586等等)设计的总线扩展工业标准。EISA总线包括ISA总线的所有性能外,还把总线宽度从16位扩展到32位、总线频率从8.3MHz提高到16MHz
3、MCA总线
MCA(Micro Channel Architecture即微通道总线结构)是IBM公司专为其PS\2系统(使用各种Intel处理器芯片的个人计算机系统)开发的总线结构。该总线的总线宽度是32位,最高总线频率为10MHz。虽然MCA总线的速度比ISA和EISA快,但是IBM对MCA总线执行的是使用许可证制度,因此MCA总线没有象ISA、EISA总线一样得到有效推广。
4、VESA总线
VESA(Video Electronics Standards Association即视频电子标准协会)是VESA组织(1992年由IBM、Compaq等发起,有120多家公司参加)按局部总线(Local Bus)标准设计的一种开放性总线。VESA总线的总线宽度是32位,最高总线频率为33MHz。
5、PCI总线
PCI(Peripheral Component Interconnect即连接外部设备的计算机内部总线 )是美国SIG(Special Interest Group of Association for Computer Machinery即美国计算机协会专业集团)集团推出的新一代位总线。该总线的最高总线频率为33MHz,数据传输率为80Mby/s(峰值传输率为133Mby/s)。
早期的486系列计算机主板采用ISA总线和EISA总线,而奔腾(Pentium)或586系列计算机主板采用了PCI总线和EISA总线。根据586系列主板的技术标准,主板应该淘汰传统的EISA总线,而使用PCI总线结构,但由于很多用户还在使用ISA总线或EISA总线接口卡,所以大多数586系列主板仍保留了EISA总线。
6、AGP总线
AGP(Accelerated Graphics Port)即高速图形接口。专用于连接主板上的控制芯片和AGP显示适配卡,为提高视频带宽而设计的总线规范,目前大多数主板均有提供。
7、USB总线
USB(Universal Serial Bus即通用串行总线)是一种简单实用的计算机外部设备接口标准,目前大多数主板均有提供。
8、Alpha EV6总线
为消除现有总线的瓶颈,AMD(American Micro Devices即美国微设备公司)Athlon(是AMD公司在1999年末推出的新一代位处理器系统)系统要求总线结构在设计上力求为新一代x86平台提供前所未有的数据传输带宽,以确保运行于多路处理器服务的企业级商业应用软件可以更顺畅地运行。为此,AMD公司在其最先推出的一款Athlon处理器上使用了一个200MB/s的系统总线,即Alpha EV6总线,其带宽较目前Intel P6总线结构大1倍。如果使用更高时钟频率的AMD Athlon处理器,这个系统总线的频率还可以相应提高,以支持更大的数据带宽,满足更大、更强劲的系统配置的需要。
AMD Athlon总线采用信息包传输协议,而不是受*的管道式P6总线协议,将处理器的请求传输至系统芯片组。这个信息包传输协议可将系统带宽的使用率降至最低,并允许每一处理器容纳24项预处理任务,是PCI总线结构预处理任务的6倍。由于高速AMD Athlon系统总线可支持较大的字节突发式传输以及利用误差校正代码保护所有数据,因此需依赖系统存储器提供重要数据的应用方案将是直接的受益者。此外,AMD Athlon系统总线结构能够支持处理器物理可寻址存储器取8TB(1TB=1024GB)以上的数据,相比之下,PCI总线的结构则只可支持GB的数据存取。
9、PCI-X局部总线
为解决Intel架构服务器中PCI总线的瓶颈问题,Compaq、IBM和HP公司决定加快加宽PCI芯片组的时钟速率和数据传输速率,使其分别达到133MHz和1GB/s。利用对等PCI技术和Intel公司的快速芯片作为智能I/O电路的协处理器来构建系统,这种新的总线称为PCI-X。PCI-X 技术能通过增加计算机*处理器与网卡、打印机、硬盘存储器等各种外围设备之间的数据流量来提高服务器的性能。与PCI相比,PCI-X拥有更宽的通道、更优良的通道性能以及更好的安全性能。很多媒体和观察家都预计在未来的几年中,PCI-X能与目前的设备兼容,并具有良好的扩展性,发展前景乐观。
10、NGIO总线
NGIO(Next Generation Input/Output)总线是Intel公司推出的下一代I/O总线结构。与其它总线结构有所区别,NGIO总线结构采用的是与传统共享总线不同的交换机制和系统主芯片连接的对等PCI总线。这种总线结构的出现可以说彻底改变了CPU传输数据的方式,在CPU和外部设备之间不进行同步数据传输,而是将信息打成数据包在目标通道适配器和主通道适配器间发送。这种异步通讯可以将CPU从相对速度较慢的外围设备数据的处理等待中出来,而这在多处理器系统中尤为重要。因为在多处理器系统中,各CPU间要为使用较慢的外围总线而展开竞争,而NGIO则有一个多级交换器,它一端连接2个目标通道适配器和PCI控制器,PCI总线另一端连接主通道适配器,通过主通道适配器连接芯片组,芯片组再连接CPU和内存。NGIO有4条连线,2条用于输入,2条用于输出,数据传输率为2.5GB/s。NGIO在工作时,将处理器与I/O分离,这使得处理器在每次出现新的数据处理请求时不必停下来,而由连接到服务器内存上的I/O引擎与外设进行通信。此外,NGIO还可以创建多条I/O通道,允许通道上的信号类型变化,其交换器集合采用允许数据选择多条路径的"交换结构"(Switched Fabric)方式。这些变化使NGIO具有了更好的性能、可靠性和可伸缩性。由于NGIO具有多条不与处理器直接连接的通道,因此还可以对可靠性进行其他的一些改进。
由于在无需增加更多直连到处理器的内部数据通道或总线的条件下,就可以添加处理器,因此,可伸缩性得到了改善。另外,NGIO还有其他一些优点。例如,利用NGIO,服务器可以被分割,因此,处理器和内存可以安装在一起,而I/O 可以放在另一处。使用这种设置的优点是可以在相同的物理空间中堆叠更多的服务器。
11、Future I/O总线
Future I/O(将来的输入输出总线)总线结构是与NGIO相竞争的另一种总线,目前仍处在IBM、Compaq、HP等公司的研制开发中,据称其数据传输率可达10GB/s。
作者简介 木合塔尔•甫拉提,男,1972年8月出生,1995年毕业于大学电子信息科学系 ,现为财经学院计算机系计算机网络与电子技术教研室讲师。曾在《财经》《财经学院学报》等报刊上发表有关计算机硬件、软件和电子技术等方面的论文4篇。