首页 热点资讯 义务教育 高等教育 出国留学 考研考公

...B,且OA=OB. (1)求该抛物线的解析式;(2)若点M为AB

发布网友 发布时间:22分钟前

我来回答

1个回答

热心网友 时间:25分钟前

(1) ;(2) ;(3) 或

试题分析:(1)由抛物线 得B(0,-4),再结合OA=OB,且点A在x轴正半轴上,即可求得点A的坐标,从而求得结果;
(2)先根据等腰直角三角形的性质得到∠OAB=∠OBA=45°,AB= ,即得∠ADM+∠AMD=135°,由∠CMD=45°可得∠AMD+∠BMC=135°,证得△ADM∽△BMC,根据相似三角形的性质可得 ,再根据M为AB的中点可得AM=BM= ,即可求得所求的函数关系式;
(3)由 即可求得抛物线 与x轴另一个交点为,由点A、B的坐标可求得AB中点M的坐标,再分①当MP经过点(-2,0)时,②当MQ经过点(-2,0)时,这两种情况求解即可.
(1)由抛物线 得B(0,-4),
∵OA=OB,且点A在x轴正半轴上,
∴A(4,0)
将A(4,0)代入 得
,解得
∴抛物线的解析式为 ;
(2)∵OA=OB=4,∠AOB=90°,
∴∠OAB=∠OBA=45°,AB= ,
∴∠ADM+∠AMD=135°
∵∠CMD=45°
∴∠AMD+∠BMC=135°,
∴∠ADM=∠BMC, 
∴△ADM∽△BMC,
∴ ,则 ,
∵M为AB的中点,
∴AM=BM= ,
∴ 就是所求的函数关系式;
(3)由
∴抛物线 与x轴另一个交点为(-2,0),
∵A(4,0),B(0,-4),
∴AB中点M的坐标为(2,-2)
①当MP经过点(-2,0)时,MP的解析式为
∵MP交y轴于点C,
∴C(0,-1),则n=BC=OB-OC=3
由 ,得
∴OD=OA-AD= ,则D( ,0)
∵MQ经过M(2,-2)、D( ,0),
∴MQ的解析式为 ;
②当MQ经过点(-2,0)时,MQ的解析式为
此时,点D的坐标为(-2,0),m=AD=6
∴ ,即BC=
∴OC=OB-BC= ,则C(0,- )
∵MP经过M(2,-2)、C(0,- ),
∴MP的解析式为 .
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com